A new theorem on the absolute Riesz summability factors
نویسندگان
چکیده
منابع مشابه
A note on absolute summability factors
A sequence (bn) of positive numbers is said to be δ -quasi-monotone, if bn → 0, bn > 0 ultimately and ∆bn ≥ −δn, where (δn) is a sequence of positive numbers (see [3]). Let (φn) be a sequence of complex numbers and let ∑an be a given infinite series with partial sums (sn). We denote by σα n and tα n the nth Cesàro means of order α , with α > −1, of the sequences (sn) and (nan), respectively, i.e.,
متن کاملA New Study on the Absolute Summability Factors of Fourier Series
In this paper, we establish a new theorem on | A, pn |k summability factors of Fourier series using matrix transformation, which generalizes a main theorem of Bor [6] on ∣∣N̄, pn∣∣k summability factors of Fourier series. Also some new results have been obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2014
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1408537b